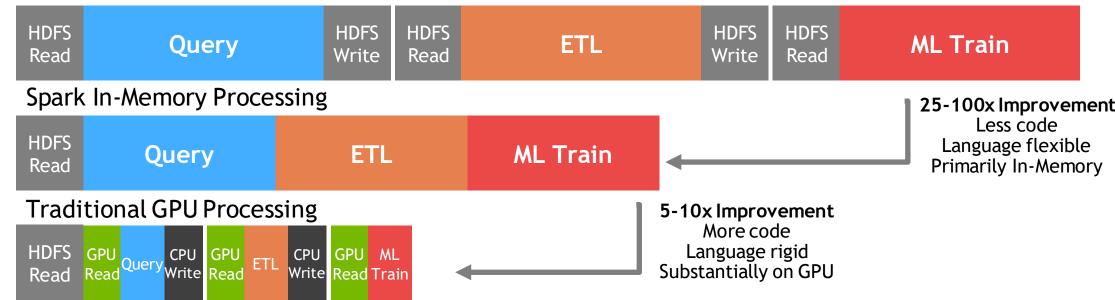


Data Processing Evolution

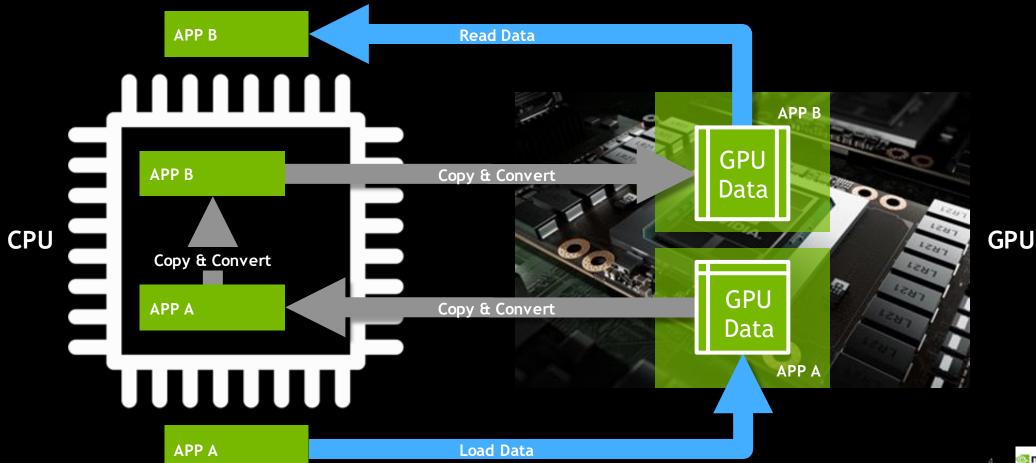
Faster data access, less data movement

Hadoop Processing, Reading from disk



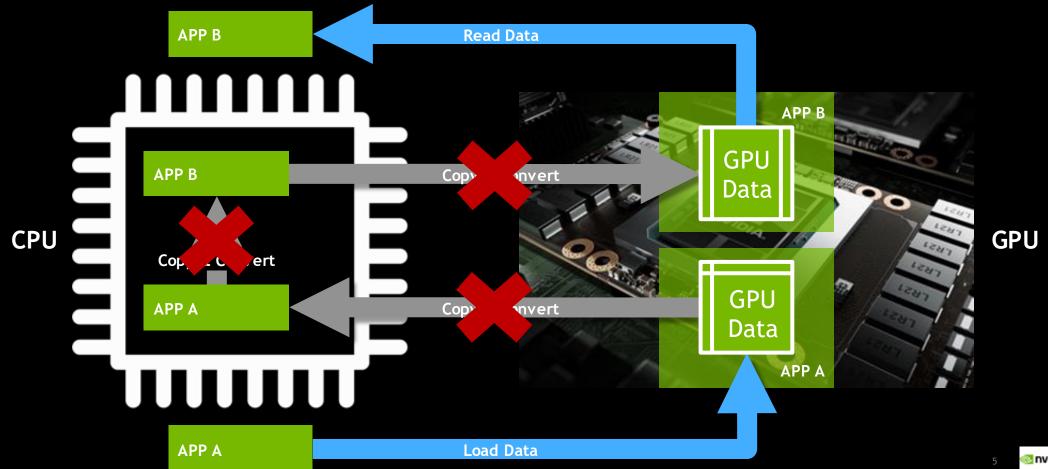
Data Movement and Transformation

The bane of productivity and performance

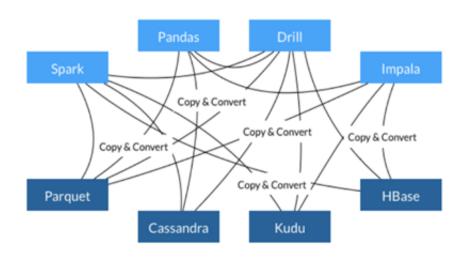


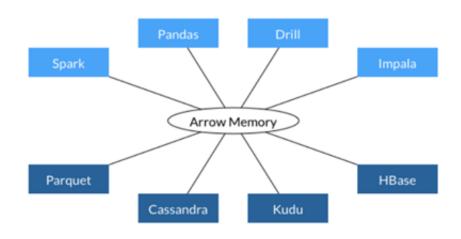
Data Movement and Transformation

What if we could keep data on the GPU?



Learning from Apache Arrow





- Each system has its own internal memory format
- 70-80% computation wasted on serialization and deserialization
- Similar functionality implemented in multiple projects

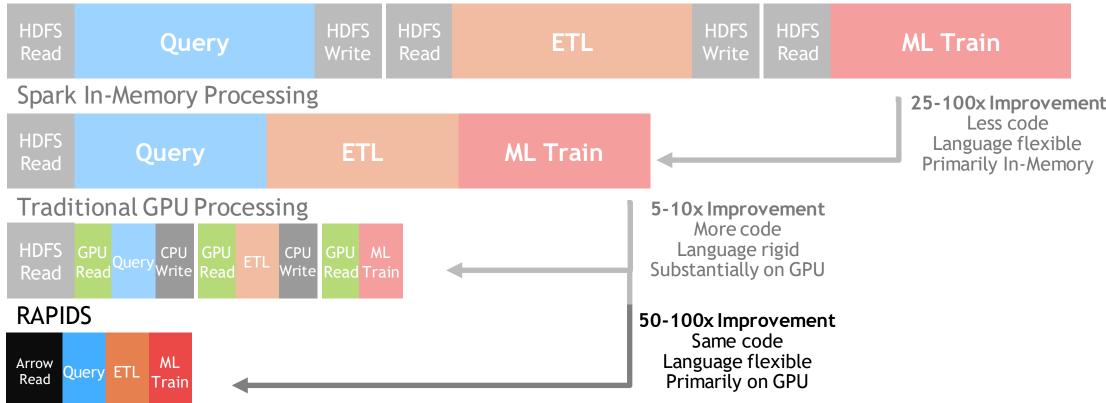
- All systems utilize the same memory format
- No overhead for cross-system communication
- Projects can share functionality (eg, Parquet-to-Arrow reader)

From Apache Arrow Home Page - https://arrow.apache.org/

Data Processing Evolution

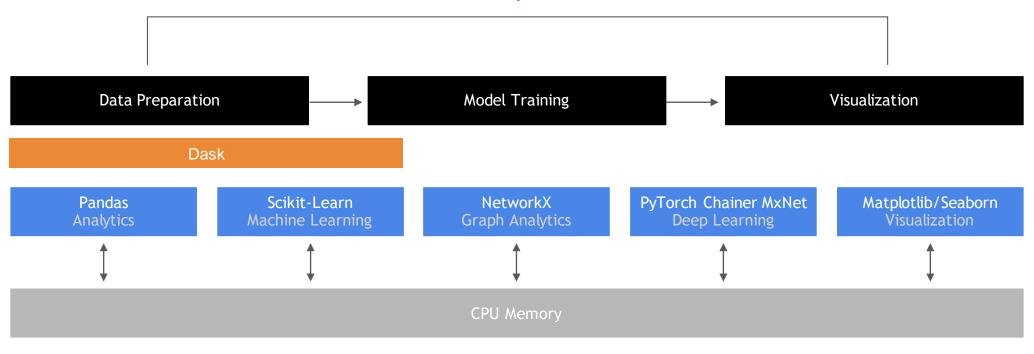
Faster data access, less data movement

Hadoop Processing, Reading from disk



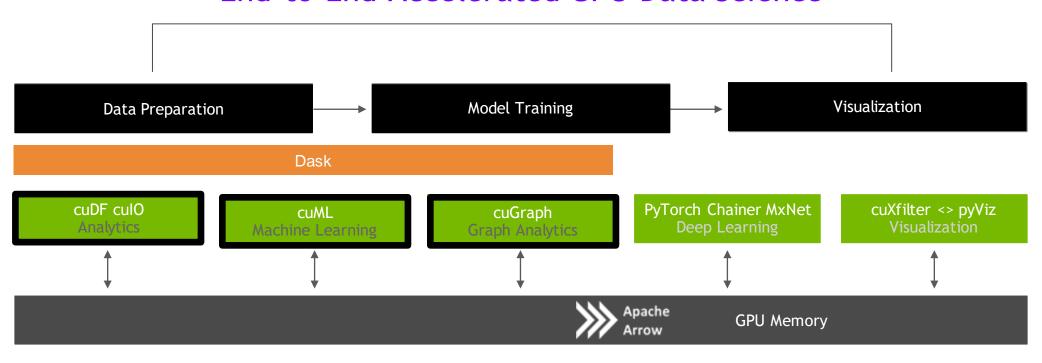
Open Source Data Science Ecosystem

Familiar Python APIs

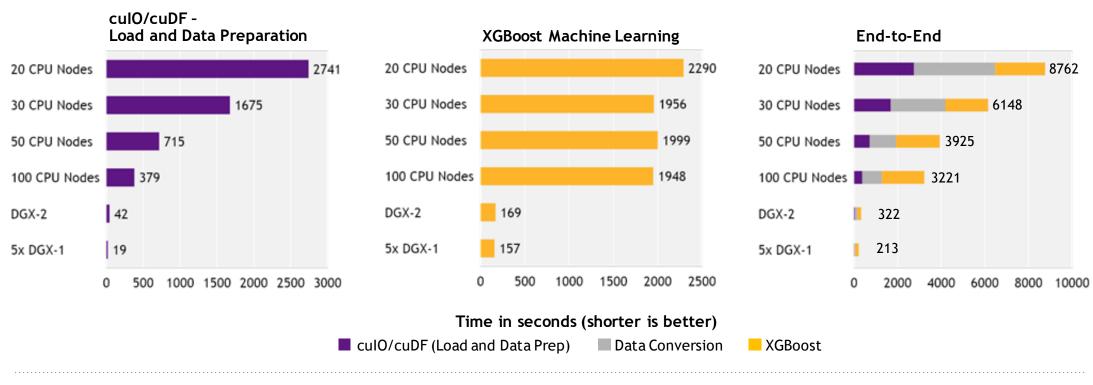


RAPIDS

End-to-End Accelerated GPU Data Science



Faster Speeds, Real-World Benefits



Benchmark

200GB CSV dataset; Data prep includes joins, variable transformations

CPU Cluster Configuration

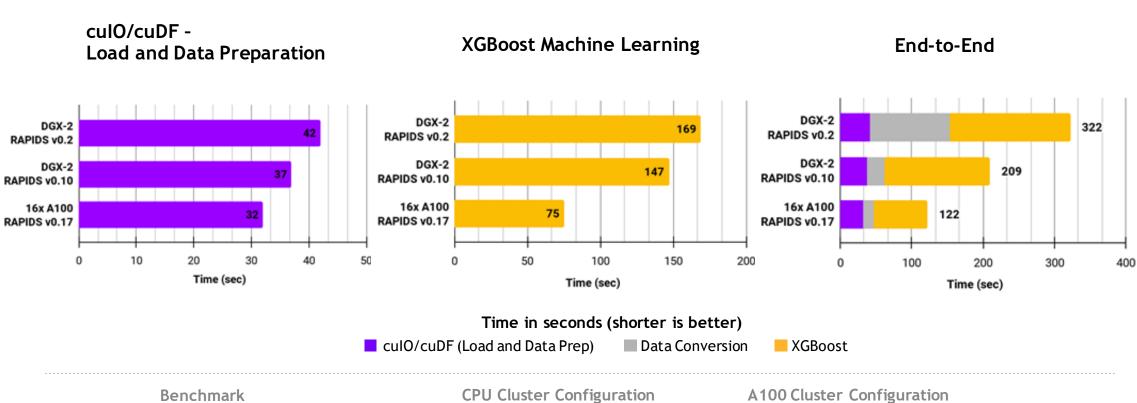
CPU nodes (61 GiB memory, 8 vCPUs, 64-bit platform), Apache Spark

DGX Cluster Configuration

5x DGX-1 on InfiniBand network

Faster Speeds, Real-World Benefits

Even Better with A100 and RAPIDS 0.17



bit platform). Apache Spark

200GB CSV dataset; Data prep includes

joins, variable transformations

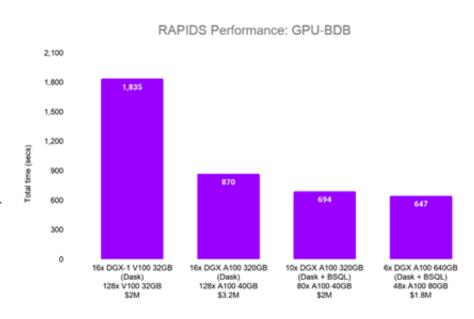
CPU nodes (61 GiB memory, 8 vCPUs, 64- 16 A100 GPUs (40GB each)

🔯 NVIDIA.

Lightning-fast performance on real-world use cases

GPU Big Data Benchmark (GPU-BDB) is a data science benchmark derived from TPCx-BB¹, consisting of 30 end-to-end queries representing real-world ETL and Machine Learning workflows. It involves both structured and unstructured data. The benchmark starts with reading data from disk, performs common analytical and ML techniques (including NLP), then writes results back to disk to simulate a real world workflow.

Results at 10TB scale show RAPIDS' performance increasing over time, while TCO continues to go down. The recently announced DGX-A100 640GB is perfectly suited to data science workloads, and lets us do more work in almost half as many nodes as the DGX-A100 320GB (6 nodes vs 10) for even better TCO.



Continuous Improvement

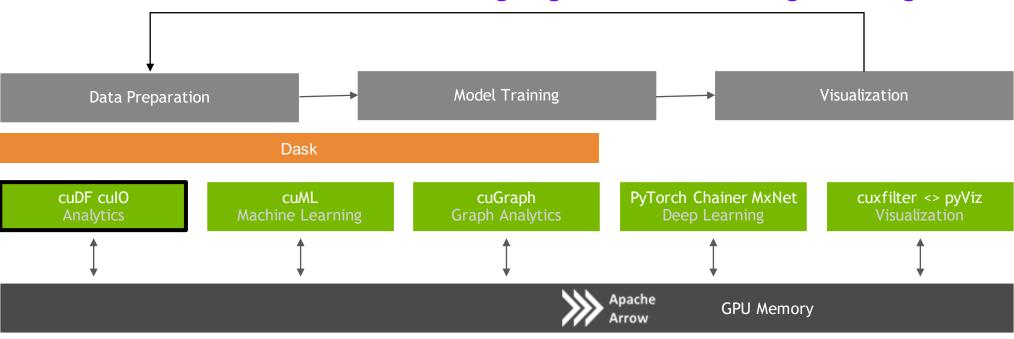
- 2.8x performance, almost a third the nodes, and cheaper to boot—in <1 year
- BlazingSQL at 10TB showing 25% improvement compared to Dask over TCP
- Q27 faster and more accurate with hugging Face

^{1:} GPU-BDB is derived from the TPCx-BB benchmark and is used for internal per formance testing. Results from GPU-BDB are not comparable to TPCx-BB.

cuDF

RAPIDS

GPU Accelerated data wrangling and feature engineering



cuDF — ANALYTICS

GPU DataFrame Library Built on Apache Arrow

Libraries

Dask-cuDF: Distributed Computing using Dask; Support for multi-GPU, multi-node

cuDF: Python bindings for libcudf (Pandas like API for DataFrame manipulation)

libcudf: CUDA C++ Apache Arrow GPU DataFrame and operators (Join/Merges, GroupBys, Sort, Filters, etc.)

Dask-cuDF Distributed Computing

> cuDF Python Bindings

libcudf CUDA C++ Implementation

culO — FILE I/O Direct File Loading to cuDF

Availability	Supported File Formats
Now	CSV, Parquet, ORC, JSON

Extraction is the Cornerstone

cuDF I/O for Faster Data Loading

- Follow Pandas APIs and provide >10x speedup
- CSV Reader v0.2, CSV Writer v0.8
- Parquet Reader v0.7, Parquet Writer v0.12
- ORC Reader v0.7, ORC Writer v0.10
- JSON Reader v0.8
- Avro Reader v0.9
- GPUDirect Storage integration in progress for bypassing PCIe bottlenecks!
- Key is GPU-accelerating both parsing and decompression wherever possible

```
import pandas, cudf

import pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))

CPU times: user 25.9 s, sys: 3.26 s, total: 29.2 s
Wall time: 29.2 s

12748986

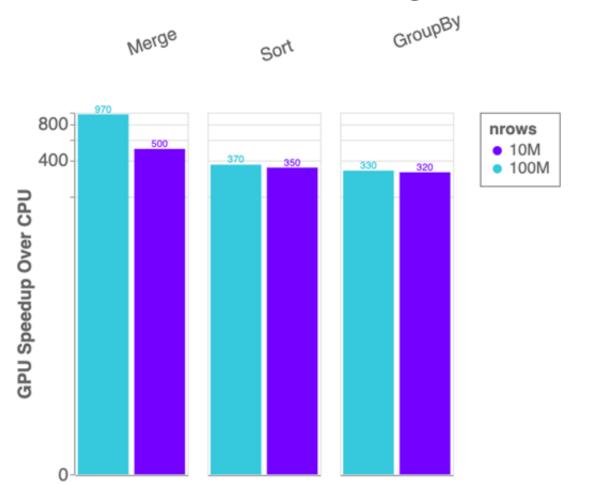
import pandas.read_csv('data/nyc/yellow_tripdata_2015-01.csv'))

CPU times: user 1.59 s, sys: 372 ms, total: 1.96 s
Wall time: 2.12 s

1: ldu -hs data/nyc/yellow_tripdata_2015-01.csv

1.96 data/nyc/yellow_tripdata_2015-01.csv
```

Benchmarks: single-GPU Speedup vs. Pandas



cuDF v0.13, Pandas 0.25.3

Running on NVIDIA DGX-1:

GPU: NVIDIA Tesla V100 32GB

CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Benchmark Setup:

RMM Pool Allocator Enabled

DataFrames: 2x int32 columns key columns, 3x int32 value

columns

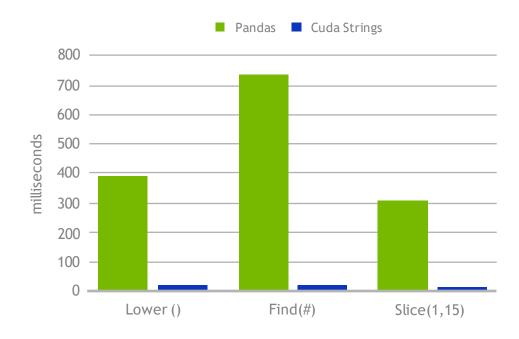
Merge: inner; GroupBy: count, sum, min, max calculated

for each value column

cuDF String Support

Current v0.16 String Support

- Regular Expressions
- Element-wise operations
 - Split, Find, Extract, Cat, Typecasting, etc...
- String GroupBys, Joins, Sorting, etc.
- Categorical columns fully on GPU
- Native String type in libcudf C++
- NLP Preprocessors
 - Tokenizers, Normalizers, Edit Distance, Porter Stemmer, etc.
- Further performance optimization
- ► JIT-compiled String UDFs



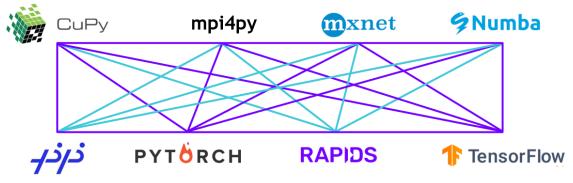
Interoperability for the Win

Real-world workflows often need to share data between libraries

RAPIDS supports device memory sharing between many popular data science and deep learning libraries

Keeps data on the GPU--avoids costly copying back and forth to host memory

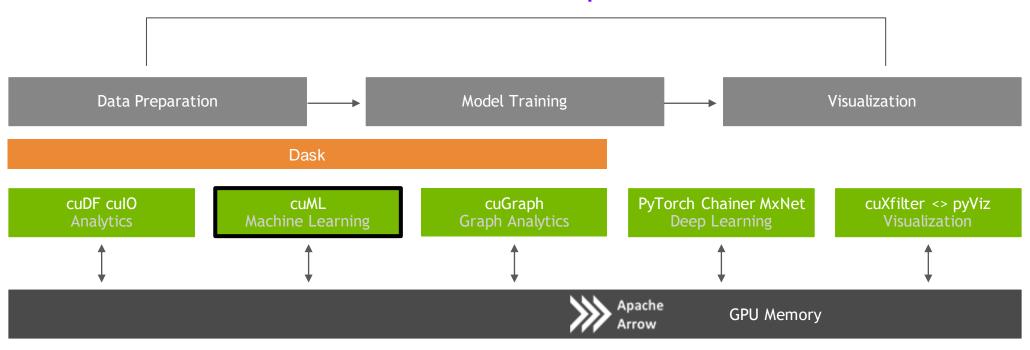
Any library that supports DLPack or __cuda_array_interface__ will allow for sharing of memory buffers between RAPIDS and supported libraries



cuML

Machine Learning

More models more problems



cuML — MACHINE LEARNING

GPU Accelerated Scikit-learn + XGBoost Libraries

Dask

Distributed Training: Used for distributed cuML model training

Python API

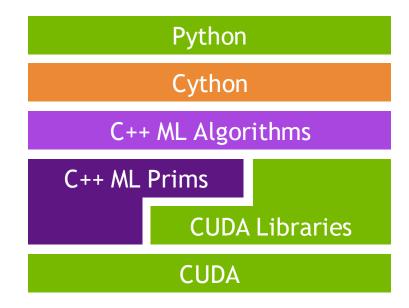
Language Bindings: Python bindings to C++/CUDA based cuML Uses cuDF DataFrames as input

cuML

C++/CUDA ML Algorithms: C++/CUDA machine learning algorithms

ml-prims

CUDA ML Primitives: Low level machine learning primitives used in cuML | Linear algebra, statistics, matrix operations, distance functions, random number generation



RAPIDS matches common Python APIs

CPU-Based Clustering

```
from sklearn.datasets import make_moons import pandas
```

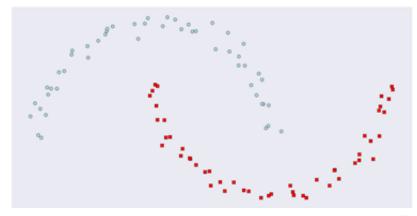
```
X, y = make_moons(n_samples=int(1e2),
noise=0.05, random_state=0)
```

```
from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps = 0.3, min_samples = 5)
```

dbscan.fit(X)

y_hat = dbscan.predict(X)





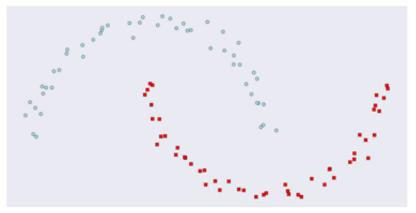
RAPIDS matches common Python APIs

GPU-Accelerated Clustering

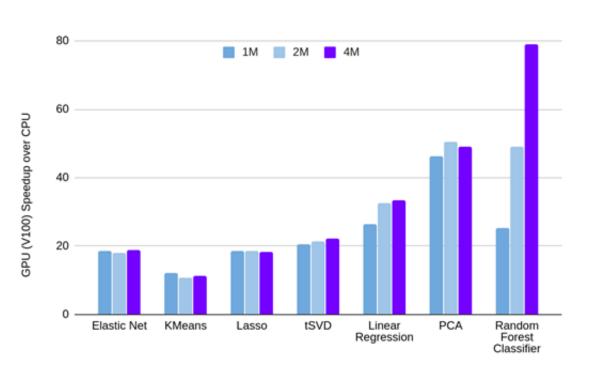
```
from cuml import DBSCAN dbscan = DBSCAN(eps = 0.3, min_samples = 5)

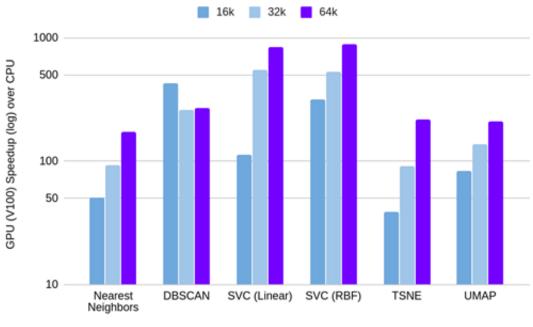
dbscan.fit(X)

y_hat = dbscan.predict(X)
```

Benchmarks: Single-GPU cuML vs Scikit-learn



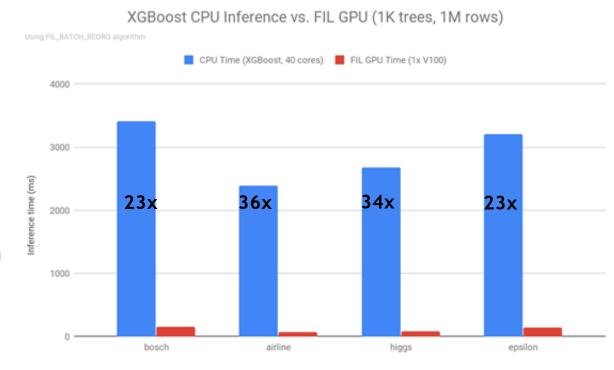


Forest Inference

Taking models from training to production

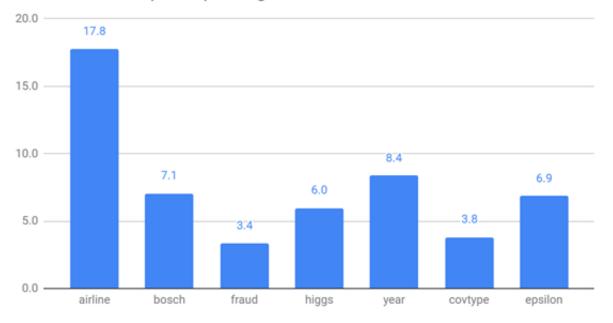
cuML's Forest Inference Library accelerates prediction (inference) for random forests and boosted decision trees:

- Works with existing saved models (XGBoost, LightGBM, scikit-learn RF cuML RF soon)
- Lightweight Python API
- Single V100 GPU can infer up to 34x faster than XGBoost dual-CPU node
- Over 100 million forest inferences per sec (with 1000 trees) on a DGX-1 for large (sparse) or dense models



- RAPIDS works closely with the XGBoost community to accelerate GBDTs on GPU
- XGBoost can seamlessly load data from cuDF dataframes and cuPy arrays
- Dask allows XGBoost to scale to arbitrary numbers of GPUs
- With the gpu_hist tree method, a single GPU can outpace 10s to 100s of CPUs
- RAPIDS comes paired with XGBoost 1.1 (as of 0.14)

XGBoost GPU Speedup - Single V100 vs Dual 20-core Xeon E5-2698



RAPIDS Integrated into Cloud ML Frameworks

Accelerated machine learning models in RAPIDS give you the flexibility to use hyperparameter optimization (HPO) experiments to explore all variants to find the most accurate possible model for your problem.

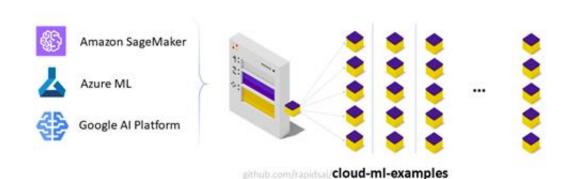
With GPU acceleration, RAPIDS models can train 25x faster than CPU equivalents, enabling more experimentation in less time.

The RAPIDS team works closely with major cloud providers and OSS solution providers to provide code samples to get started with HPO in minutes.

https://rapids.ai/hpo

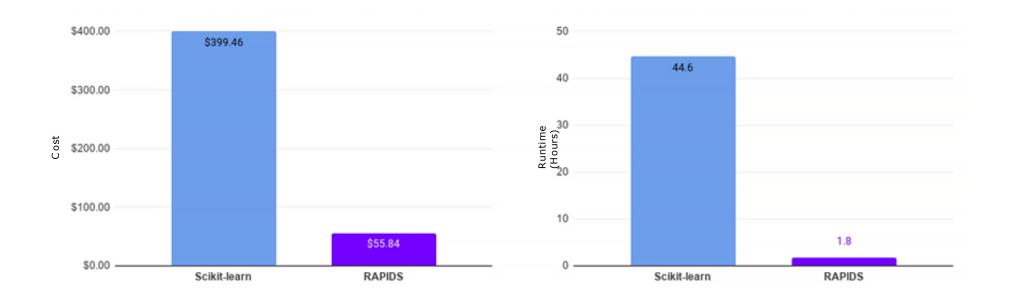
MANY PATHS TO RAPIDS HPO

RAPIDS Integration into Cloud/Distributed Frameworks



HPO Use Case: 100-Job Random Forest Airline Model

Huge speedups translate into >7x TCO reduction



Based on sample Random Forest training code from cloud-ml-examples repository, running on Azure ML. 10 concurrent workers with 100 total runs, 100M rows, 5-fold cross-validation per run.

GPU nodes: 10x Standard_NC6s_v3, 1 V100 16G, vCPU 6 memory 112G, Xeon E5-2690 v4 (Broadwell) - \$3.366/hour CPU nodes: 10x Standard DS5 v2, vCPU 16 memory 56G, Xeon E5-2673 v3 (Haswell) or v4 (Broadwell) - \$1.017/hour"

Road to 1.0 - cuML

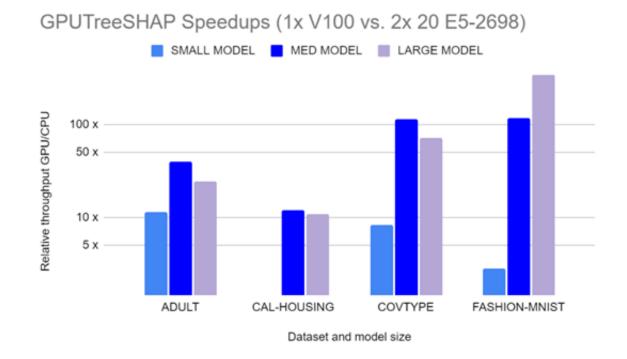
RAPIDS 0.17 - December 2020

cuML	Single-GPU	Multi-Node-Multi-GPU
Gradient Boosted Decision Trees (GBDT)		
Linear Regression		
Logistic Regression		
Random Forest		
K-Means		
K-NN		
DBSCAN		
UMAP		
Holt-Winters		
ARIMA		
T-SNE		
Principal Components		
Singular Value Decomposition		
SVM		

SHAP Explainability

GPUTreeSHAP for XGBoost

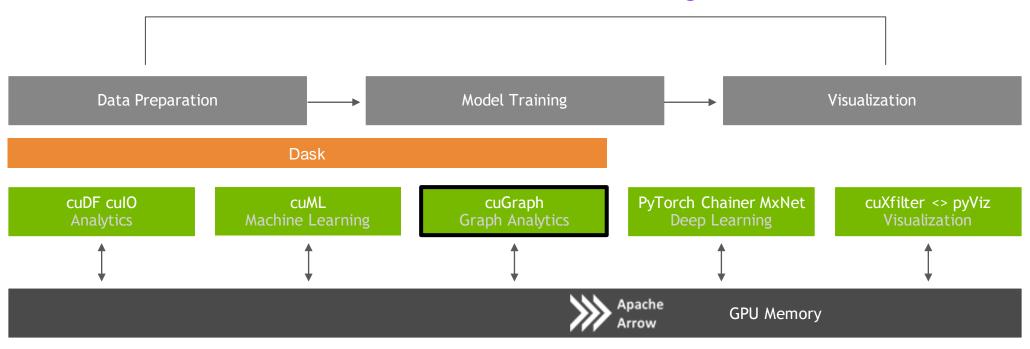
- SHAP provides a principled way to explain the impact of input features on each prediction or on the model overall - critical for interpretability
- SHAP has often been too computationallyexpensive to deploy for large-scale production
- ► RAPIDS ships with GPU-accelerated SHAP for XGBoost with speedups of 20x or more (demo code available in the XGBoost repo)
- RAPIDS 0.17 includes experimental <u>Kernel</u> and <u>Permutation explainers</u> for black box models



cuGraph

Graph Analytics

More connections more insights



Goals and Benefits of cuGraph

Focus on Features and User Experience

BREAKTHROUGH PERFORMANCE

- Up to 500 million edges on a single 32GB GPU
- Multi-GPU support for scaling into the billions of edges

SEAMLESS INTEGRATION WITH cuDF AND cuML

Property Graph support via DataFrames

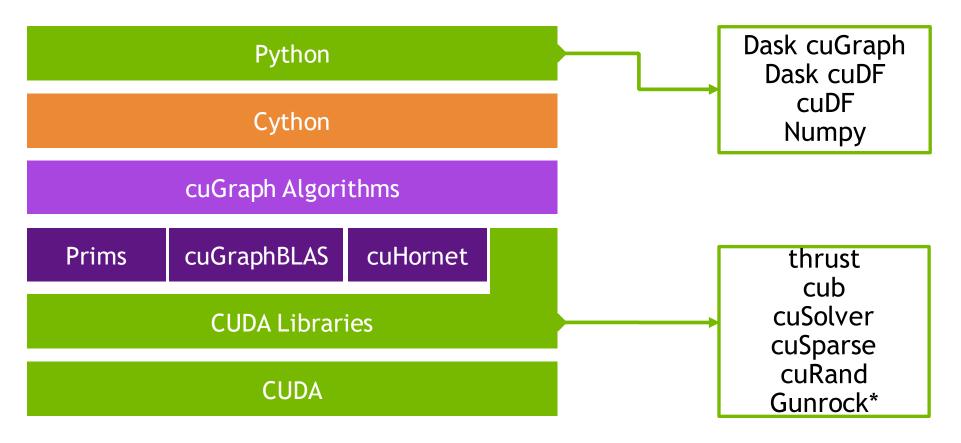
MULTIPLE APIS

- Python: Familiar NetworkXlike API
- C/C++: lower-level granular control for application developers

GROWING FUNCTIONALITY

 Extensive collection of algorithm, primitive, and utility functions

Graph Technology Stack



Multi-GPU PageRank Performance

PageRank portion of the HiBench benchmark suite

HiBench Scale	Vertices	Edges	CSV File (GB)	# of GPUs	PageRank for 3 Iterations (secs)
Huge	5,000,000	198,000,000	3	1	1.1
BigData	50,000,000	1,980,000,000	34	3	5.1
BigData x2	100,000,000	4,000,000,000	69	6	9.0
BigData x4	200,000,000	8,000,000,000	146	12	18.2
BigData x8	400,000,000	16,000,000,000	300	16	31.8

^{*}BigData x8, 100x 8-vCPU nodes, Apache Spark GraphX \Rightarrow 96 mins!

Road to 1.0 - cuGraph RAPIDS 0.17 - December 2020

cuGRAPH	Single-GPU	Multi-Node-Multi-GPU
Page Rank		
Personal Page Rank		
Katz		
Betweenness Centrality		
Spectral Clustering		
Louvain		
Ensemble Clustering for Graphs		
K-Truss & K-Core		
Connected Components (Weak & Strong)		
Triangle Counting		
Single Source Shortest Path (SSSP)		
Breadth-First Search (BFS)		
Jaccard & Overlap Coefficient		
Force Atlas 2		
Hungarian Algorithm		
Leiden		

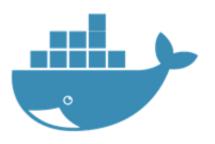
HOW TO GET STARTED AND EXAMPLES

RAPIDS

How do I get the software?

https://github.com/rapidsai

https://anaconda.org/rapidsai/



https://ngc.nvidia.com/registry/nvidia-rapidsai-rapidsai

https://hub.docker.com/r/rapidsai/rapidsai/

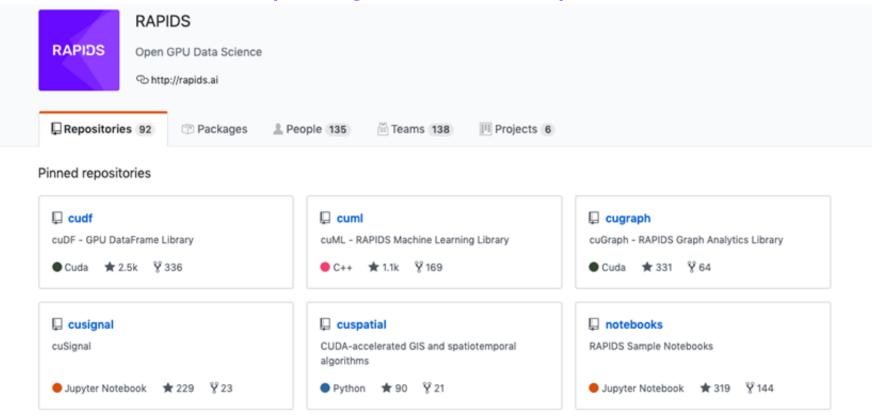
Easy Installation

Interactive Installation Guide

RAPIDS RELEASE SELECTOR RAPIDS is available as conda packages, docker images, and from source builds. Use the tool below to select your preferred method, packages, and environment to install RAPIDS. Certain combinations may not be possible and are dimmed automatically. Be sure you've met the required prerequisites above and see the details below. NOTICES A RAPIDS repos will rename stable/release branches in v0.15 ♠ Python 3.6 & CUDA 10.0 EOL in v0.14 Release changes to clx and cuxfilter in v0.15 RAPIDS dask-xgboost library is deprecated in v0.15 r Preferred 1 r ♣ Advanced ¬ Source 🗫 Conda 🚟 METHOD Docker + Examples -Docker + Dev Env -Stable (0.15) Nightly (0.16a) RELEASE Legacy (0.14) cuGraph cuDF cuML cuSignal PACKAGES All Packages cuSpatial Ubuntu 18.04 @ CentOS 7 🌣 RHEL 7 3 Ubuntu 16.04 @ LINUX Python 3.7 Python 3.8 (0.15/0.16 only) **PYTHON** CUDA 10.1.2 CUDA CUDA 10.2 CUDA 11.0 (0.15/0.16 only) NOTE: Ubuntu 16.04/18.04 & CentOS 7 use the same conda install commands. COMMAND conda install -c rapidsai -c nvidia -c conda-forge \ -c defaults rapids=0.15 python=3.7

Explore: RAPIDS GitHub

https://github.com/rapidsai



Notebook Examples

https://github.com/rapidsai/notebooks

RAPIDS PREREQUISITES

NVIDIA Pascal GPU architecture or better

CUDA 10.1, 10.2, 11.0 & compatible NVIDIA driver

Ubuntu 16.04/18.04, CentOs 7

Docker CE v19.03+

nvidia-docker v2+

Join the Conversation

GOOGLE GROUPS

https://groups.google.com/ forum/#!forum/rapidsai **DOCKER HUB**

https://hub.docker.com/ r/rapidsai/rapidsai **SLACK CHANNEL**

https://rapids-goai.slack.com/join

STACK OVERFLOW

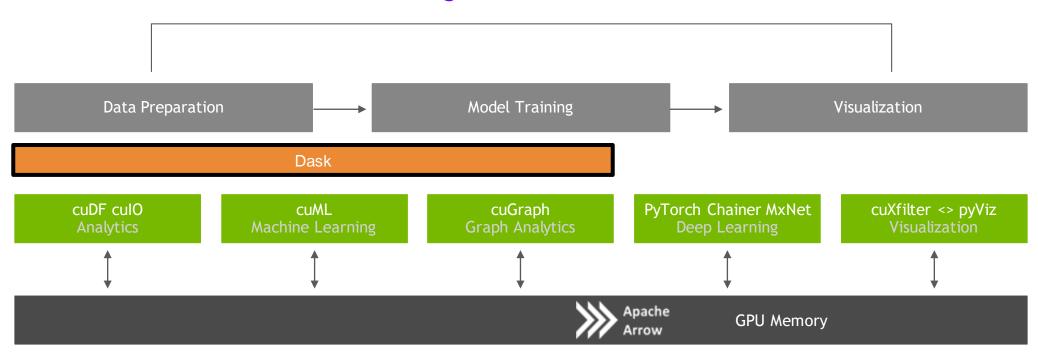
https://stackoverflow.com/tags/rapids

Contribute back: Issues, Feature Requests, PRs, Blogs, Tutorials, Videos, QA

Dask + GPUs

RAPIDS

Scaling RAPIDS with Dask



Dask What is Dask?

- Distributed compute scheduler built to scale Python
- Scales workloads from laptops to supercomputer clusters
- Extremely modular: disjoint scheduling, compute, data transfer and out-of-core handling
- Multiple workers per node allow easier oneworker-per-GPU model

Why Dask?

PyData Native

- **Easy Migration:** Built on top of NumPy, Pandas Scikit-Learn, etc.
- Easy Training: With the same APIs
- **Trusted:** With the same developer community

Deployable

• **HPC:** SLURM, PBS, LSF, SGE

Cloud: Kubernetes

Hadoop/Spark: Yarn

Easy Scalability

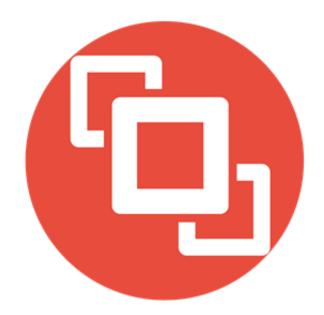
- Easy to install and use on a laptop
- Scales out to thousand-node clusters

Popular

 Most common parallelism framework today in the PyData and SciPy community

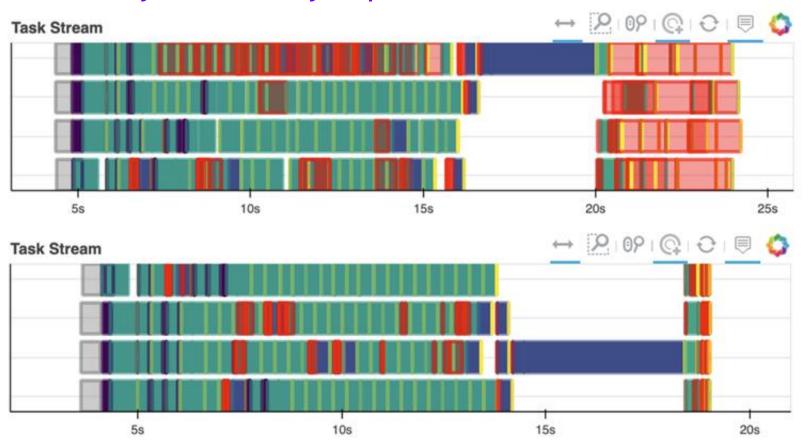
Why OpenUCX? Bringing hardware accelerated communications to Dask

- TCP sockets are slow!
- UCX provides uniform access to transports (TCP, InfiniBand, shared memory, NVLink)
- Alpha Python bindings for UCX (ucx-py) https://github.com/rapidsai/ucx-py
- Will provide best communication performance, to Dask based on available hardware on nodes/cluster



OpenUCX

Dask Array SVD + CuPy Experiment with and without UCX



Scale up with RAPIDS

RAPIDS and Others

Accelerated on single GPU

NumPy -> CuPy/PyTorch/.. Pandas -> cuDF Scikit-Learn -> cuML Numba -> Numba

PyData

NumPy, Pandas, Scikit-Learn, Numba and many more

Single CPU core In-memory data

Scale out with RAPIDS + Dask with OpenUCX

RAPIDS and Others

Accelerated on single GPU

NumPy -> CuPy/PyTorch/.. Pandas -> cuDF Scikit-Learn -> cuML Numba -> Numba

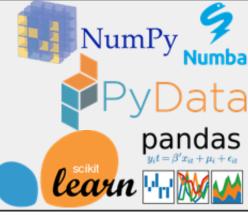
RAPIDS + Dask with OpenUCX

Multi-GPU
On single Node (DGX)
Or across a cluster

PyData

NumPy, Pandas, Scikit-Learn, Numba and many more

Single CPU core In-memory data



Dask

Multi-core and Distributed PyData

NumPy -> Dask Array Pandas -> Dask DataFrame Scikit-Learn -> Dask-ML ... -> Dask Futures

Scale out / Parallelize

Development Environment

